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Summary. This chapter gives a narrative of the problems we encountered us-
ing genetic programming to build a symbolic regression tool for large-scale, time-
constrained regression problems. It describes in detail the problems encountered, the
commonly held beliefs challenged, and the techniques required to achieve reasonable
performance with large-scale, time-constrained regression. We discuss in some de-
tail the selection of the compilation tools, the construction of the fitness function,
the chosen system grammar (including internal functions and operators), and the
chosen system architecture (including multiple island populations). Furthermore in
order to achieve the level of performance reported here, of necessity, we borrowed
a number of ideas from disparate schools of genetic programming and recombined
them in ways not normally seen in the published literature. 1
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1 This work was completed with the support of Timothy May who pioneered the
Strategy Central Project at Investment Science Corp.
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1 Introduction

This is the story of the problems encountered by Investment Science Cor-
poration in using genetic programming techniques to construct a large-scale,
time-constrained symbolic regression tool.

Since any in-depth discussion of our financial methods is strictly forbidden
by our corporate policy, we introduce our financial motivations very briefly
and from these motivations quickly construct the requirements of a generic
symbolic regression tool which could be used for our application and for many
other large-scale, time-constrained data mining applications.

In the main, the published genetic programming literature addresses prob-
lems which are small-scale, without serious time constraints, and often com-
plex. In this historical context, a number of commonly held beliefs and a num-
ber of disparate schools of thought have developed in the GP community. In
our pursuit of industrial scale performance with large-scale, time-constrained
data mining problems, time and again we were required to reexamine many
commonly held beliefs and, of necessity, to borrow a number of ideas from
disparate schools of genetic programming and recombine them in ways not
normally seen in the published literature.

These commonly held beliefs were challenged and these disparate schools
of genetic programming were combined into unusual hybrids:

• Challenged: ”That standard GP parameters (such as population size,
crossover rate, etc.) will work for large-scale, time-constrained problems”

• Combined: ”Hybrid combination of grammar and tree-based GP”
• Combined: ”Hybrid fitness measure combining value prediction with order

prediction in GP symbolic regression”
• Combined: ”Hybrid combination of multiple island populations and greedy

search with tree-based GP”

This narrative follows the pattern of typical applied research projects at
Investment Science involving man years of engineering effort and hundreds of
experiments. Each of the challenges we faced are explained in detail, and the
hybrid solutions required to overcome the challenges are also described in de-
tail. The narrative is punctuated with descriptions of the seminal experiments
leading up to the final experiment which produced a generic symbolic regres-
sion tool capable of processing one million row by twenty column data mining
tables in less than fifty hours on a single workstation computer (specifically
an Intel XPS 3.4Ghz Extreme Edition with 800Mhz front side bus and 2GB
of 533MHz RAM, running our Analytic Information Server software generat-
ing Lisp agents that maximize the on-board Intel registers and on-chip vector
processing capabilities).
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1.1 Financial Motivation

We introduce our financial motivations only very briefly. From these moti-
vations we construct the requirements for a generic symbolic regression tool
which can be used not only for our financial application but for many other
large-scale, time-constrained data mining applications.

Consider a quantitative (quant) trading system for the top 800 exchange-
traded common stocks with the largest dollar-volume traded in the prior week
(YCK04a and CB04a). These securities are so active that we will be able to
move millions of dollars in and out of these investments without appreciably
perturbing their prices. We will retrain the system weekly using a sliding train-
ing window of five years or 1,250 training days of historical data (YCK04a).
This allows relatively frequent system retraining (weekly) while providing a
relatively long retraining period of fifty hours (the weekend).

Our first issue is selecting a basket of 20 sample column data points from
the over 500 available data points such as Open, High, Low, Close, Volume,
EPS, Analyst Rating, etc. We solve this issue by implementing multiple inde-
pendent trading systems. For instance one might have a value trading system
with one set of 20 training points, a growth trading system with another set of
training points, and a chartist trading system with yet another set of training
points. If one has a farm of 100 workstations, each workstation could retrain
each of 100 independent trading systems once per week.

Our second issue is the large volume of data which is fed to the system on
every retraining period (1,250 historical daily samples for each of 800 common
stocks is 1,000,000 rows of training data by 20 columns). The solution to this
second issue is the subject of this paper as we pursue the construction of a
generic regression tool which can perform a single 1,000,000 row by 20 column
symbolic regression in less than 50 hours on a single workstation computer.
Clearly such a tool would prove useful not only in our own financial application
but in many other large-scale, time-constrained applications.

1.2 Experimental Setup

All our experiments are scored on testing data sets different from the data
sets they were trained on. We have crafted nine separate test cases (formulas),
from simple to complex. All of our test cases are trained on one million row
by M column randomly generated training matrices (where M is either 1, 5,
or 20). Then a separate randomly generated one million row by M column
testing matrix is used for scoring. All of our nine test case formulas are shown
below (generated with five columns).

Test Case Formulas
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linear
y = 1.57 + (1.57*x0) - (39.34*x1) +

(2.13*x2) + (46.59*x3) + (11.54*x4);

hidden
y = 1.57 + (2.13*sin(x2));

cubic
y = 1.57 + (1.57*x0*x0*x0) -

(39.34*x1*x1*x1) + (2.13*x2*x2*x2) +
(46.59*x3*x3*x3) + (11.54*x4*x4*x4);

elipse
y = 0.0 + (1.0*x0*x0) + (2.0*x1*x1) + (3.0*x2*x2) +

(4.0*x3*x3) + (5.0*x4*x4);

hyper
y = 1.57 + (1.57*tanh(x0*x0*x0)) -

(39.34*tanh(x1*x1*x1)) + (2.13*tanh(x2*x2*x2)) +
(46.59*tanh(x3*x3*x3)) + (11.54*tanh(x4*x4*x4));

cyclic
y = 14.65 + (14.65*x0*sin(x0)) -

(6.73*x1*cos(x0)) - (18.35*x2*tan(x0)) -
(40.32*x3*sin(x0)) - (4.43*x4*cos(x0));

cross
y = -9.16 - (9.16*x0*x0*x0) -

(19.56*x0*x1*x1) + (21.87*x0*x1*x2) -
(17.48*x1*x2*x3) + (38.81*x2*x3*x4);

mixed
if ((mod(x0,4) == 0)

{
y = (1.57*log(.000001+abs(x0))) -

(39.34*log(.000001+abs(x1))) +
(2.13*log(.000001+abs(x2))) +
(46.59*log(.000001+abs(x3))) +
(11.54*log(.000001+abs(x4)));

}
else
if ((mod(x0,4) == 1)

{
y = (1.57*x0*x0) - (39.34*x1*x1) +

(2.13*x2*x2) + (46.59*x3*x3) +
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(11.54*x4*x4);
}

else
if ((mod(x0,4) == 2)

{
y = (1.57*sin(x0)) - (39.34*sin(x1)) +

(2.13*sin(x2)) + (46.59*sin(x3)) +
(11.54*sin(x4));

}
else
if ((mod(x0,4) == 3)

{
y = (1.57*x0) - (39.34*x1) +

(2.13*x2) + (46.59*x3) +
(11.54*x4);

}

ratio
if ((mod(x0,4) == 0)

{
y = ((1.57*x0)/(39.34*x1)) +

((39.34*x1)/(2.13*x2)) +
((2.13*x2)/(46.59*x3)) +
((46.59*x3)/(11.54*x4));

}
else
if ((mod(x0,4) == 1)

{
y = ((1.57*x0)

((39.34*x1)
((2.13*x2)
((46.59*x3)

}
else
if ((mod(x0,4) == 2)

y = ((1.57*sin(x0))/(39.34*tan(x1))) +
((39.34*sin(x1))/(2.13*tan(x2))) +
((2.13*sin(x2))/(46.59*tan(x3))) +
((46.59*sin(x3))/(11.54*tan(x4)));

}
else
if ((mod(x0,4) == 3)

y = 0.0 - (39.34* log(.000001+abs(x1))) +
(2.13* log(.000001+abs(x2))) +
(46.59*log(.000001+abs(x3))) +
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(11.54* log(.000001+abs(x4)));
}

Our nine test cases vary from simple (linear) to complex (formulas with
embedded if-then-else expressions). Finally, to add difficulty, we sometimes
train and test our nine test cases with random noise added using the following
formula.

;; Modify each y in Y or each ty in TY with random noise.
y = (y * .80) + (y * random(.40));

The addition of random noise makes each test case inexact and theoreti-
cally undiscoverable. Nevertheless, given our application, we need to test our
symbolic regression tool against inexact data.

1.3 Fitness Measure

• Combined: ”Hybrid fitness measure combining value prediction with order
prediction in GP symbolic regression compiler”

Standard regression techniques utilize least squares error as a fitness mea-
sure; however, we desire a high correlation between the order of our estimates,
EY, and our actual values, Y. Let us define a new term sequence as follows:
If our estimates, EY, sequence our actual values, Y, perfectly, then it is true
that, if EY[1] <= EY[2] then Y[1] <= Y[2] for all ey in EY and all y in Y. If we
produce a perfect regression, with a percent error of zero, then EY will always
sequence Y perfectly. Unfortunately, if the regression percent error is less than
perfect, EY may not sequence Y very well at all. Furthermore, two regression
formulas, with equal percent error, may sequence Y differently. Clearly, con-
sidering our end application, we are interested in regression solutions which
sequence Y as well as possible. In fact, even if the regression percent error
is poor but the sequencing is good, we can still have an advantage, in the
financial markets, with our symbolic regression tool.

We combined a normalized average percent error score with an order
preservation score to produce an optimal fitness measure for our financial
application.

(loop for n from 0 until N do
(setq avgDifY (+ avgDifY (/ (abs (- Y[n] avgY)) N))))

(loop for n from 0 until N do
(setq errPct (+ errPct (/ (abs (- EY[n] Y[n])) N avgDifY))))

We measure the sequencing of Y by EY by counting how many Y pairs
are out of order when sorted by EY.
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(setq sortedEY (sort EY < true))
(loop for n from 0 until N do

(setq k1 sortedEY[n]) (setq k2 sortedEY[(+ n 1)])
(if (> Y[k1] Y[k2]) then (setq seqErr (+ seqErr (/ 1 N)))))

We now have a sequencing measure (seqErr) which varies from 0% (per-
fect) to 100% (terrible) and a normalized average percent error (errPct). We
construct our final fitness measure using both as follows.

(setq fitness (+ errPct (* .001 seqErr)))

1.4 Multiple Grammars

• Combined: ”Hybrid combination of grammar and tree-based GP”

Recently, informal and formal grammars have been used in genetic pro-
gramming (ONeil03) to enhance the representation and the efficiency of a
number of applications including symbolic regression. Much of the published
literature on grammar-based GP focuses on alternative genome representa-
tions and evolutionary operators. After extensive experimentation, in our ap-
plication domain, we discovered that alternative genome representations and
evolutionary operators provided less added value than the use of multiple
grammars themselves.

Therefore we settled on a hybrid combination of tree-based GP and for-
mal grammars where the head of each sublist is a grammar rule agent with
polymorphic methods for mutation, crossover, etc. Different grammar rules
communicate with each other by message passing (a staple of object-oriented
and agent-oriented software engineering), described in more detail as follows.

Formal grammars are a staple of computer science and are widely used in
industry (Aho86). We decided, from an engineering perspective, to allow our
symbolic regression tool to use multiple grammars and even to mix grammars
during the symbolic regression process.

There are two sides to every formal grammar: the recognition side, and
the production side. For grammar recognition we used a feature-based com-
piler compiler which reads a set of feature-based grammar rules. We con-
structed our symbolic regression tool as a large agent complex, and embedded
in the symbolic regression tool a formal grammar definition file (readable by
the feature-based compiler-compiler agent). When the feature-based compiler-
compiler agent is pointed at the embedded formal grammar definition rules,
a child agent compiler for the specified grammars is automatically generated
inside the symbolic regression tool. For the production side of each formal
grammar, we generated grammar production agents embedded in the sym-
bolic regression tool.

There are three important grammars in the system. These are: a basic
JavaScript-like numeric expression grammar for generating fast register and
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pointer integer and floating point computations (EXP); a standard regression
grammar with a single s-expression genome (REG); and a multiple variable re-
gression grammar with a multiple s-expression genome (MVL). The embedded
feature-based grammar rules support recognition of each of these grammars
even when mixed in the same well-formed formula (WFF). Grammar produc-
tion is accomplished with embedded agent grammar complexes (one for each
grammar), with matching polymorphic methods allowing each grammar to
communicate with the other grammars for operations such as crossover.

We use standard Tree based genetic programming techniques with the ex-
ception that the head of every Lisp s-expression is a grammar production
rule; also, the tail of each s-expression contains the arguments required by
the grammar production rule. We use standard mutation and crossover oper-
ations (Koz92i) in our numeric expression EXP grammar. The REG grammar
has only one s-expression in its chromosome so REG operates identically to
the EXP grammar (using standard tree-based mutation and crossover). The
multiple s-expression grammar (MVL) selects a random numeric s-expression
chromosome, and performs standard tree-based mutation on the selected s-
expression.

Details of each of the grammars are quite straight forward and can best
be conveyed from the recognition side.

• REG Grammar: regress EXP ;
• MVL Grammar: mvlregress(EXP,EXP,...,EXP);

The weight-vectors, used as arguments to the ENN grammar rule, are stan-
dard numeric vectors whose length is determined by the number of columns in
the regression problem. The numeric s-expressions, of the EXP grammar, are
standard JavaScript-like numeric expressions with the variables x0 through
xm (where m is the number of columns in the regression problem), and with
the following binary and unary operators + - / % * < <= == ! = >= > expt
max min abs cos cosh cube exp log sin sinh sqroot square tan tanh. To these
we add the ternary conditional expression operator (...) ? ... : ... ;

1.5 Overview of Symbolic Regression Tool

At Investment Science Corporation we have constructed a large agent com-
plex for high volume symbolic regression applications consisting of one million
rows and from five to twenty columns. Due to the heavy resources required
to evaluate a candidate well-formed-formula (WFF) across one millions rows,
we cannot afford to evaluate the same candidate twice. Therefore, every WFF
which we have ever evaluated is saved during the course of a single training
cycle. All WFF candidates are saved in a collection sorted by their fitness
scores. A user option setting restricts the survivor WFF population to the
”F” most fit WFF candidates. User option settings support single or multi-
ple island populations and other potentially usefully clustering of candidate
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WFFs. Parenthetically, all the tool’s user option settings are available at run
time; therefore, it might be possible for the tool to evolve itself, although we
have not attempted anything of that nature.

Within the survivor population, mutation and crossover occur in the same
fashion as with standard genetic programming. Each WFF survivor is visited
once per each evolution. A user-option determines the probability of mutation
and another determines the probability of crossover. If warranted, Crossover
occurs between the visited individual and a randomly selected individual,
from the survivor population, with less fitness than the visited individual.
The tool supports multiple grammars in the same training cycle as described
previously.

Standard genetic programming practice encourages the use of multiple
independent training runs. Each run incorporates one initialization step and
”G” generational steps during which evolutionary operators are applied. It
is standard practice for the experimenter to perform multiple independent
training runs of G generations each and then report the results of the fittest
individual evolved across all runs (the champion individual).

Since our symbolic regression tool is to be used in a fully automated set-
ting, their can be no human intervention to decide how many independent
training runs to perform; therefore, the concept of automatic multiple in-
dependent training runs has been incorporated into the tool. A user-option
determines the number of evolutions ”without fitness improvement” which
trigger the system to start a new independent training run. After each in-
dependent training run, the best-of-breed champions from the previous run
are saved and the training cycle restarts from scratch. Thus a training cycle
of ”G” generations may involve more or fewer separate independent training
runs depending on the occurrence of long gaps without fitness improvement.

In every experimental report, the following standard table of results will
be provided for each of the nine test cases.

• Test: The name of the test case
• Gens: The number of generations used for training
• Minutes: The number of minutes required for training
• Train-Error: The average percent error score for the training data
• Test-Error: The average percent error score for the testing data
• Sorting: The sequencing score for the testing data
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1.6 Standard GP using the REG Grammar

• Challenged: ”That standard GP parameters (such as population size,
crossover rate, etc.) will work for large-scale, time-constrained problems”

Our first experiment was to use the REG grammar, with its very fast train-
ing time, for a straight forward approach to large scale symbolic regression.
Our basic algorithmic components are WFFs, a memo cache of WFFs, the
survivor population of the fittest WFFs, and a list of champion WFFs. We
used the GPSR option settings which are almost directly in line with (Koz92i)
and are as follows. At the initialization step of every training ”run”, exactly
5000 randomly generated WFFs, in the REG grammar, are evaluated. All
evaluated WFFs are memoized (saved in a memo cache) and also saved in
sorted order by fitness score (in the survivor population). The top twenty-
five WFFs participate in the genetic operations of mutation and crossover
(Koz92i) during each incremental generation. The probability of mutation is
10%, and the probability of crossover is 100%. When a WFF is chosen for
crossover, its mate is chosen at random from the WFFs of lower fitness within
the top twenty-five fittest individuals (in the survivor population). Crossover
is always performed twice with the same parents and always produces two
children which are evaluated, memoized, and saved in sorted order by fitness
score (in the survivor population). The maximum number of generations be-
fore training halts is provided at the start of training time. If ten generations
pass with no change in the fittest WFF, then system saves the fittest WFF in
its list of champions, clears all WFFs in the survivor population (but not the
memo cache) and evaluates 5000 randomly generated WFFs, starting a new
”run”. Any new ”run” does not reset the generation count. Training always
proceeds until the maximum number of generations have been reached. If G
represents the maximum number of generations allowed for a fully automated
training cycle, then the maximum number of independent ”runs” is (G/10).
Depending upon the progress in training, there may only be a single ”run”
during the entire training process. At the completion of training, the fittest
champion WFF (the fittest WFF ever seen) is chosen as the result of the train-
ing process. The results of training on the nine test cases, using the GPSR
option settings over 1 million rows and from one to five columns, returned
near perfect results. The test results, with no random noise, demonstrated
that more or less standard GP parameters are a great choice for one million
row by one column problems even given the meager training time allowed.

Unfortunately when we increase the number of columns from one to twenty,
the test results do not show the same level of excellence. We are doing very
well on the simpler problems; but, the more complicated test cases are exceed-
ing the allocated fifty hour maximum training time in only 100 generations.
Clearly the hope that more or less standard GP settings will work for all
large-scale, time-constrained problems has been challenged.
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Thinking about our next step, we wonder could the problem be that we
need more generations to train on the more complicated test cases? We decide
that our next step will be to find some method of increasing the speed of the
training process to allow 100 generations for training within the allocated
maximum of fifty hours.

1.7 Vertical Slicing

Let us define a new procedure Vertical slicing as follows. First, the rows in
the training matrix X are sorted in ascending order by the dependent values,
Y. Then the rows in X are subdivided into S vertical slices by simply selecting
every Sth row to be in each vertical slice. Thus the first vertical slice is the set
of training rows as follows X[0], X[S], X[2*S], ... . Each vertical slice makes no
assumptions about the underlying probability distribution and each vertical
slice contains evenly distributed training examples, in X, across the entire
range of ascending) dependent values, in Y.

After several months of study and experimentation, including using sup-
port vector machines to select training example subsets, we selected vertical
slicing as the most expedient method of decreasing training time. Vertical slic-
ing works well because it is extremely simple, makes no assumptions about the
underlying probability distribution function, and is extremely fast.

Vertical slicing reduces training time by subdividing the training data into
”vertical slices” each of which is representative of the whole training data set
over ascending values of Y. We may subdivide the training data into as many
vertical slices as practicable. The larger the number of slices, the fewer training
examples are in each slice.

Our next step is to randomly select one of the vertical training data slices
as our ”sample” training slice; furthermore, we modify each agent WFF and
the memo cache to record the sample-fitness. There are now two different
fitness scores for each WFF: sample-fitness and fitness. During evaluation,
each WFF is first scored on the ”sample” training slice and its sample-fitness
is recorded. Next the sample-fitness of the WFF is compared to the sample-
fitness of the least-fit WFF in the survivor population. If the sample-fitness of
the WFF is greater than or equal to the sample-fitness of the least-fit WFF
in the survivor population, the WFF is then scored against the entire training
data and its true fitness is recorded. This approach will produce false negatives
but no false positives.

Our next experiment was to use the REG grammar, with the RGPSR op-
tion settings which are exactly like the GPSR option settings (discussed in the
previous experiment) except that the vertical slicing option is turned on. The
number of vertical slices is set to 100. The results of training on the nine test
cases, using the RGPSR option settings over 1 million rows and 20 columns
show that the vertical slicing improves the training speed of standard GP but
does not improve the regression accuracy. Now that we have the training time
within our maximum limit, how can we improve accuracy?
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1.8 Using the MVL Grammar

After several additional months of study and experimentation we decided to
replace the REG grammar with the MVL grammar, and to modify the stan-
dard crossover operator to include some non-standard hill-climbing. The REG
grammar, being a single expression regression, can be computed and optimized
in the single pass required to compute the average percentage error. Unfor-
tunately, the MVL grammar requires significant additional computational ef-
fort. Given an MVL grammar candidate, mvlregress(exp1,exp2,...,expM), a
multivariate regression must be performed in order to both provide optimized
coefficients and to compute the average percentage error. In preparation for
the multivariate regression we create an intermediate N row by M column
transform matrix, ’X, where each expression, exp1 thru expM, is the trans-
form creating the ’x0 thru ’xm transform variables. The transform matrix, ’X,
and the dependent variable vector, Y, are then used to represent a system of
linear equations, C*’X = Y, which we use the Gaussian elimination algorithm
(Sedge88) to compute the optimized coefficients and the error.

We experimented with both the standard s-expression crossover operator
in (Koz92i) as well as the linear string-based codon style crossover operator
of (ONeil03). It is possible algorithmically to linearize any tree-based gram-
mar rule s-expression into a linear string-based codon style genome and vice-
versa. Primarily because we are employing grammar based s-expressions, with
a distinct separation between genotype and phenotype, we found each style of
crossover operator to be different, yet to be relatively equivalent, with respect
to performance in our high speed, high volume application. However, we found
that adding a small amount of hill-climbing mutation to our crossover oper-
ator improved our regression performance. Given two parent grammar rule
s-expression WFFs,

’(ruleAdd (ruleSub x0 34.5) (ruleCos x4)),

and

’(ruleMul (ruleDiv x0 x5) (ruleAdd x4 x1)),

the standard crossover operator would use substitution to swap the selected
subexpressions as follows:

’(ruleAdd (ruleSub x0 34.5) (ruleDiv x0 x5))

We found that we could improve our performance by, with a probability of
20%, averaging the two selected subexpressions as follows:

’(ruleAdd (ruleSub x0 34.5) (ruleAvg (ruleCos x4) (ruleDiv x0 x5)))

In addition to the ruleAvg grammar operator, we also used, with equal
probability, the following grammar rules to combine the two selected subex-
pressions: ruleMax, ruleMin, ruleAdd, ruleSub, ruleMul, and ruleDiv. Once
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again, our hill-climbing crossover operates as a standard crossover operator
with the exception that in 20% of the cases we average the two selected subex-
pression as shown above.

Our next experiment was to use the MVL grammar, with the RMVL option
settings which are exactly like the RGPSR option settings (discussed in the
previous experiment) except that the MVL grammar is substituted for the REG
grammar and our enhanced hill-climbing crossover operator is substituted for
the standard crossover operator. The results of training on the nine test cases,
using the RMVL option settings over 1 million rows and 20 columns, showed
an increase in performance in both average percent error and data sequenc-
ing. Unfortunately, we suffer an over all increase in computation time to the
point that many of our test cases exceed the maximum allocated 3000 min-
utes (50 hours). Clearly we need to make additional enhancements to reduce
computation time in cases with twenty columns.

1.9 Island GP using Multiple Grammars

• Combined: ”Hybrid combination of multiple island populations and greedy
search with tree-based GP”

After several additional months of study and experimentation we decided
to make the following additional enhancements to increase performance and
reduce computation time in cases with twenty columns. We introduced ”Double
Vertical Slicing” and multiple island populations using the REG and MVL
Grammars.

Our first alteration induces genetic diversity via multiple independent is-
land populations. There is a correlation between the fittest individuals in a
training run and genetic diversity in the population (Almal06). Furthermore
the fittest individuals in a training run tend to cluster around a set of common
root expressions (Daida05) and (HS04a). Capitalizing on these observations,
we set our symbolic regression tool’s options to create additional independent
island populations, one for each column in the problem.

During the initialization step in every training run we generate the first
5000 possible root expressions sequentially in every independent island popu-
lation. We sequentially examine every possible root expression with relevance
to each column. A root expression has relevance to a column if and only if the
column name appears, at least once, in the root expression. For example, the
WFF ”x0” has relevance to column zero (hence independent island population
zero), while the WFF ”x4*sin(x8)” has relevance to column four and column
eight.

In each independent island population using the REG grammar, we gener-
ate 5000 root expressions (ignoring real constants and the trinary conditional
expression), such that in each island population each root expression is guar-
anteed to have at least one reference to the name for that column x0 thru xm.
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This forces some genetic diversity and focuses each island population around
the island’s designated column.

Since the sequentially generated root WFFs are sorted in each island pop-
ulation by fitness, we have performed a defacto greedy search and made some
guesses, by column, as to which grammar root expressions will be the most
indicative of future evolutionary fitness. The above initialization step we call
”root initialization” and it places 5000 sequentially generated REG grammar
WFFs in each of M independent island populations sorted by fitness (the same
number of islands as columns). It is performed once during the initialization
step of every training run.

Our second alteration induces genetic diversity in the main population by
borrowing information from each multiple independent island population. In
the initialization step of every training ”run”, after the root initialization,
exactly 5000 randomly generated WFFs, using the MVL grammar, are evalu-
ated in the main population. Each of the M numeric expressions in the MVL
grammar mvlregress(exp0,...,expM) are taken at random from the 25 fittest
individuals in the respective independent island populations. These are the
fittest root expressions generated in each independent island population dur-
ing ”root initialization”. This modified initialization process induces genetic
diversity in the main population and guarantees that each of the MVL gram-
mar’s M numeric expressions will have at least one reference to the designated
terminal for that column x0 thru xm. All evaluated WFFs are memoized and
saved in sorted order by fitness score. The top twenty-five WFFs, in the main
population, participate in the genetic operations of mutation and crossover
(Koz92i) during each incremental generation. The probability of mutation is
10%, and the probability of crossover is 100%. The hill-climbing modifications
to the crossover operator, introduced in the RMVL option settings, are also
employed here.

Our third alteration decreases training time by enhancing the vertical slic-
ing algorithm used to measure the fitness of each WFF. In the RMVL option
settings, we selected a vertical sample data set for sampling and then trained
on the full data set. Here we introduce ”double vertical slicing” by selecting
a vertical slice for sampling and another vertical slice for training. By not
training against the full training data set we further reduce training time. The
number of vertical slices is set to 100 for the sample set and is set to 10 for
the training set. Scoring each individual WFF’s fitness is always done on the
entire training data set (defacto out-of-sample scoring). This approach will
produce false negatives but no false positives.

Our fourth alteration introduces a ”tournament of champions”. In the
RMVL option settings, any time there are 10 generations with no fitness
improvement a new training run is started. In the ”tournament of champi-
ons” enhancement, every 5 training runs, migration occurs between the pool
of champions (from all previous training runs) and the main population after
all initialization. This allows previous champions to compete in the normal
evolutionary process but only once in every few training runs. This approach
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will produce greater accuracy but without sacrificing the independence of most
of the training runs.

Our final experiment was to use the REG and MVL grammars, with the
RGMVL option settings but we introduce random noise of 40%. The results
of training on the nine test cases, using the RGMVL option settings over 1
million rows and twenty columns with 40% random noise, are shown in the
table below.

Table 1. RGMVL Options 1M rows by 20 columns Random Noise

Test Gens Minutes Train-Error Test-Error Sorting
cross 100 1950 0.831 0.901 0.396
cubic 100 702 0.399 0.392 0.005
hyper 100 2077 0.852 0.896 0.111
elipse 100 910 0.705 0.662 0.156
hidden 100 828 0.110 0.015 0.112
linear 100 708 0.102 0.016 0.001
mixed 100 896 0.676 1.210 0.037
ratio 100 758 0.309 0.942 0.145
cyclic 100 738 0.433 0.511 0.884

Description of table headings:

• Test: The name of the test case
• Gens: The number of generations used for training
• Minutes: The number of minutes required for training
• Train-Error: The average percent error score for the training data
• Test-Error: The average percent error score for the testing data
• Sorting: The sequencing score for the testing data

Fortunately training time is well within our 3000 minute (50 hour) limit.
In general average percent error performance is poor with the linear and hidden
problems showing the best performance. Extreme differences between training
error and testing error in the mixed and ratio problems suggest over fitting.
Surprisingly, order prediction is fairly robust in most cases with the exception
of the cyclic and cross test cases. Furthermore order prediction is fairly robust
even on many test cases where average percent error is poor.
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1.10 Summary

Genetic Programming, from a rigorous corporate perspective, is not yet ready
for industrial use on large scale, time constrained symbolic regression prob-
lems. However, adapting the latest research results, has created a symbolic
regression tool whose promise is exciting. Academic interest in the field is
growing while pure research continues at an aggressive pace. Further applied
research in this field is absolutely warranted.

We favor the following research areas for further experimental study. Ex-
periments using standard statistical analysis to increase genetic diversity and
information flow between independent island populations and the main pop-
ulation. Experiments automating Pareto front analysis to improve selection
of promising WFF root grammar candidates. Additional experimentation with
grammar expressions to increase the speed of evolutionary training and to de-
velop a better understanding of hill-climbing operators from a root grammar
viewpoint.
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